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Abstract 

Ablation of persistent atrial fibrillation (persAF) 

targets based on signal processing techniques have been 

disappointing. Machine learning (ML) tools may be the 

solution to improve the catheter ablation responses using 

features from three electrogram (EGM) signal domains 

(spectral, temporal and statistical). 3206 EGMs were 

collected using non-contact technique from 10 patients. 

1716 EGMs have a negative catheter ablation response 

and 1490 EGMs a positive response. A Logistic 

Regression (LR) classifier was used to classify the EGMs 

based on responses to catheter ablation. The performance 

of LR for each domain features was evaluated using five 

different matrices (validation accuracy, sensitivity, 

specificity, precision and F1_score). A 5-fold cross 

validation (CV) accuracy of 91.64%, 72.68% and 67.31% 

was achieved using LR based on spectral, temporal and 

statistical features, respectively. The four remaining 

evaluation metrics ranged between (90%-93%) for 

spectral features, (66%-78%) for temporal features, and 

from 64% to 69% for statistical features. The highest 

performance was obtained with spectral features, 

followed by temporal features, whereas statistical 

features achieved the lowest scores. Hence, it can be 

concluded that spectral characteristics of EGMs are the 

most important to predict the catheter ablation responses. 

 

 

1. Introduction 

Atrial fibrillation is the most common abnormal heart 

rate (arrhythmia) and it corresponds to an increased risk 

of stroke and death-rate of five and two folds, 

respectively [1]. There are several tools that have been 

used to treat the AF.  Catheter ablation is an efficient tool 

for treating AF in the early-stage paroxysmal AF, but it is 

less effective for the advanced stages of persistent AF 

(persAF).  Several signal processing techniques based on 

different EGM signal domains have been used to guide a 

catheter ablation for AF therapy such as dominant 

frequency (DF) and organization index (OI) as features 

from the EGM spectral domain [2, 3]; mean as a feature 

from the statistical domain [4], and entropy [5] as a 

feature from the temporal domain. All of the mentioned 

features above have failed to produce good treatment 

outcomes due to multiple mechanisms that are 

responsible for initiation and maintenance of AF such as a 

fast discharging automatic ectopic foci activity; single re-

entry activity; multiple wavelets activity; and the 

functional re-entries activates resulting from rotors [6]. 

Machine learning tools have been used in several 

biomedical applications and are good tools for finding 

patterns from high dimensional data [7]. Therefore, these 

tools may be a good approach to treat persAF by 

enhancing the catheter ablation to burn sites (nodes) that 

give a positive outcome for AF therapy. 

In the current work, features from three EGM signal 

domains were used to investigate and evaluate the EGM 

signal domains for positive ablation.  EGMs positive and 

negative responses to catheter ablation were used as two 

categories to identify the outcomes of ablation procedure 

to EGMs sites (nodes in non-contact mapping catheter) 

using the features from three EGM signal domains. AF 

termination, increasing of AF cycle length (AFCL), 

deceasing in AFCL [8] and AFCL not changing were 

used as a ground truth for EGMs dataset.  

 

2. Materials and Methods 
 

2.1. Dataset 

The dataset was collected from 10 persAF patients 

undergoing first time left atrial catheter ablation. The 

collection of data was done using non-contact mapping 

catheter (Ensite array – St. Jude Medical) system from the 

high dominant frequency (HDF) regions in the left 

atrium. These regions were identified as described before 

[9]. The dataset was collected pre- and post-ablation from 

the 10 patients. Four out of ten patients had AF 

termination (1 sinus rhythm and 3 flutter) before 

pulmonary vein isolation (PVI). Pre-ablation of EGMs 

were recorded and exported offline up to 20 seconds 
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duration time for training and testing the 10 patients. 

AFCL pre- and post-ablation for each of the DF atrial 

sites were recorded using “LabsystemTM Pro EP 

Recording System”. The data were classified into two 

classes as labels: (i) positive response to ablation (AF 

termination or AFCL increase (≥10ms)), and (ii) negative 

response to ablation (AFCL decrease (≤10ms) or AFCL 

unchange) [8]. The dataset was labelled and approved by 

an interventional cardiologist at Leicester Glenfield 

Hospital.  

 

2.2. Research Toolkit 

    Time Series Feature Extraction Library (TSFEL) is one 

of the most powerful and efficient available tool libraries 

embedded in python environment. This library is used to 

compute, extract and evaluate a variety of handcrafted 

features and knowledge domain features from biomedical 

signals. The library can compute 390 features (Table 1) 

based on three processing signal domains [10]. 

 

2.3. Pre-Processing 

Twenty seconds-long EGMs were sampled at 

2034.5Hz and these were resampled at 512 Hz using 

cubic interpolation method to reduce the data storage and 

further processing time. QRST subtraction was performed 

to remove the ventricular far-field activity from each 

EGM [11]. The middle window of Figure 1 shows the 

process of QRST subtraction. 

 

 
Figure 1. The complete diagram of the proposed method 

 

2.4. Feature Extraction 

TSFEL has been used as a powerful tool to extract 

features from biomedical signals.  The features that are 

extracted by this library from each EGMs are described in 

Table1. 

Table 1. Features extracted based on bio signal domain [10] 
SPECTRAL 

DOMAIN 

TEMPORAL 

DOMAIN 

STATISTICAL 

DOMAIN 

• FFT Mean Coefficients (#256) 

• Fundamental Frequency 

• Human Range Energy 

• LPCC (#13) 

• Maximum Frequency  

• Maximum Power Spectrum 

• Median Frequency 

• MEL Frequency Cepstral 

Coefficients (#12) 

• Power Bandwidth 

• Spectral Centroid 

• Spectral Decrease 

• Spectral Distance 

• Spectral Entropy 

• Spectral Kurtosis 

• Spectral Positive turning points 

• Spectral Roll-off 

• Spectral Roll-On 

• Spectral Skewness 

• Spectral Slope 

• Spectral Spread 

• Spectral Variation 

• Wavelet Absolute Mean (#9) 

• Wavelet Energy (#9) 

• Wavelet Entropy 

• Wavelet Standard Deviation (#9) 

• Wavelet Variance (#9) 

• Absolute energy 

• Area Under the 

Curve 

• Autocorrelation 

• Centroid 

• Entropy 

• Negative turning 

points 

• Mean Absolute 

Difference 

• Mean differences 

• Median Absolute 

Difference 

• Median Difference 

• Positive turning 

points 

• Peak to Peak 

Distance 

• Signal Distance 

• Slope 

• Sum Absolute 

Difference 

• Total energy 

• Zero Crossing 

Rate 

• Neighborhood 

peaks 

• ECDF (#10) 

• ECDF 

Percentile (#2) 

• ECDF 

Percentile 

Count (#2) 

• Histogram 

(#10) 

• Interquartile 

Range 

• Kurtosis 

• Maximum 

• Mean 

• Mean Absolute 

Deviation 

• Median 

• Median 

Absolute 

Deviation 

• Minimum 

• Root Mean 

Square 

• Skewness 

• Standard 

Deviation 

• Variance 

#Spectral                                      

features = 336 

#Temporal 

features = 18 

#Statistcial 

features = 36 

#Total features = 390 

 

2.5.  Feature Selection 

 The role of feature selection in optimizing the 

classification using machine learning classifiers is 

undeniable. The better performance for machine learning 

classifiers for prediction of unseen data can be done by 

selecting the best features as inputs for ML classifier [12].  

 

2.5.1 Removal of High Correlated Features  

The criteria that have been applied to remove high 

correlated features in this approach is based on Pearson’s 

correlation. [13]. In this work, features that have a 

correlation greater than 0.95 have been removed from the 

features list. 

2.5.2. Removal of Low Variance Features 

Features with less than the specific threshold were 

removed from the feature list. A zero has been selected as 

a threshold value in the proposed method; this value is 

kept all features with non-zero variance [14].  

 

2.5.3.  Features Scaling 

The scaling method is used to normalize the range of 
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independent features of data. It is observed that the value 

of features that have large magnitude tend to dominate the 

prediction towards a particular class. Standardization 

operation was applied to scale the features. It scales 

features to have a mean (μ) of 0 and standard deviation 

(σ) of 1 (unit variance). The standard score (s) to which 

the value of feature is to be scaled is given by finding the 

value of mean (𝜇) and the standard deviation (σ) as in the 

following formula: 

𝑠 =
𝑥 − 𝜇

𝜎
 (1) 

where 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 (2) 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2                                    

𝑁

𝑖=1

 (3) 

Here, 𝑥 denotes to the selected feature, 𝜇 stands for 

the mean, and 𝜎 represents the standard deviation. 
 

3.  Experimental Results and Discussion 

The LR classifier was trained and validated on the 

dataset mentioned in section 2.1 above. To evaluate the 

performance of LR classifier for three EGM signal 

domain features, several evaluation metrics have been 

chosen that are recommended by AAMI [15]. Five-fold 

cross-validation technique was used for training and 

validating, 80% and 20% of dataset were used for training 

and validating, respectively.  Following the results from 

bar chart (Figure 2), it can be seen that the proposed 

approach can perform almost 91.64%, 72.68% and 

67.31% overall accuracy for spectral, temporal and 

statistical domain, respectively. The proposed method 

shows a sensitivity of 91.07%, 66.91% and 66.04%; 

specificity of 92.13%, 77.68% and 68.47%; precision of 

90.95%, 72.25% and 64.52%; F1_score of 91.01%, 

69.48% and 65.27% for spectral, temporal and statistical 

domain, respectively. The confusion matrices (CMs) for 

the three classifiers are shown in Figure 3. The CMs show 

the number of TP, TN, FP and FN values of EGMs 

classification using three signal domains. Figure 4 

illustrates the receiver operating characteristic curve 

(ROC) for the positive and negative classes: area under 

the curve (AUC) = 0.76, 0.81 and 0.96 for statistical, 

temporal and spectral features. Grid Search technique has 

been used to optimize the hyperparameters during the 

simulation. Hence, the hyperparameters that have been set 

using these LR classifiers: 

• C = 1, 8 and 9 for statistical, temporal and spectral 

domain features classifiers, respectively. It is the 

inverse of regularization strength, where the smaller 

values of C represent a stronger regularization. 

• Max_iter = 100 for the 3 classifiers (maximum number 

of iterations that makes the classifier solver to coverage) 

• Penalty = L2 for the 3 classifiers (it applies the 

regularization during the training process).  

• Solver = ‘lbfgs’ for statistical and temporal domain 

features classifier and ‘liblinear’ for spectral domain 

features classifier (An algorithm that used in the 

optimization problem). 

It can be noticed that the EGM spectral domain features 

have more contribution on successful ablation than other 

two domains. These results support the findings, the 

spectral analysis of EGMs play a significant role to target 

the sites of AF driver for successful ablation and in 

particular the DF, which has been widely used as a 

feature to analyze the atrial EGM [2]. DF is the frequency 

with the maximum amplitude in EGM signal, and can be 

evaluated using Fast Fourier transform (FFT). FFT mean 

coefficients (power spectral density, 256 features) 

represented the majority features extracted using this 

library. Time domain features have been used to target the 

AF drivers such as entropy [16], mean and median of 

differences and these features have resulted the mediocre 

performance. EGM features from the statistical signal 

domain have resulted the lowest performance, due to few 

features from this domain have been used as descriptors 

to target the AF driver such as a mean voltage [4] of 

EGMs and the standard deviation (STD). 

 

 
Figure 2. Performance of LR for features from 3 domains 

 

4.  Conclusions 

The proposed approach has been used to classify and 

identify the responses of EGMs to catheter ablation for an 

efficient AF treatment. Features from three EGM signal 

domains were applied separately as inputs to LR 

classifier. Classifier performance was measured for each 

feature domain. Experimental simulations show that the 

proposed approach can perform with 91.64%, 72.68% 

and 67.31% overall accuracy for spectral, temporal and 

statistical domain, respectively. The proposed method 

shows a sensitivity of 91.07%, 66.91% and 66.04%; 

specificity of 92.13%, 77.68% and 68.47%; precision of 

90.95%, 72.25% and 64.52%; F1_score of 91.01%, 

69.48% and 65.27% for spectral, temporal and statistical 

domain, respectively. From the obtained results, it can be 

concluded that the highest performance was from the 

features that are extracted from spectral domain, 

statistical features have achieved the lowest performance, 

with temporal features in between those. 
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     (a)  Statistical features          (b) Temporal features 

 

(c) Spectral features 

Figure 3. CMs of LR classifiers for the 3 domain features 

 

 
   (a) Statistical features            (b) Temporal features 

 
  (c)  Spectral features 

Figure 4. ROC and AUC of LR classifiers for the 3 

domain features  
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